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ABSTRACT: The present study considers the free vibration analysis of stiffened multi-
bay coupled shear walls on elastic foundation. The connecting beam properties and the 
thickness of the wall may be varied in a special manner. Continuous connection method 
(CCM) is employed to find the system stiffness matrix. The system mass matrix is 
found with the lumped mass assumption. A computer program has been prepared in 
MATHEMATICA computer algebra system and some sample problems have been 
solved. The results obtained using the foregoing program have been compared with 
those obtained using SAP2000 structural analysis program, ending up with a good 
match. 
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ÖZET: Bu çalışmada, elastik temel üzerine oturan, sonlu sayıda güçlendirici kirişi olan, 
bağlantı kirişi özellikleri boşluktan boşluğa ve/veya bölgeden bölgeye değişebilen çok 
sıra boşluklu perdelerin serbest titreşim analizi yapılmıştır. Sistem rijitlik matrisi 
oluşturulurken sürekli bağlantı yöntemi (SBY) kullanılmıştır. Sistem kütle matrisi, 
toplanmış kütle kabulüne göre yükseklik boyunca istenilen sayıda toplanmış kütle 
alınarak elde edilmiştir. Çalışmanın sonunda, MATHEMATICA programlama dilinde 
bir program hazırlanarak sunulan yöntemle bazı örnekler çözülmüştür. Elde edilen 
sonuçlar SAP2000 yapı analizi programı ile elde edilen sonuçlarla karşılaştırılarak 
sonuçların çok yakın olduğu gözlenmiştir. 
 
 

Introduction 
 
In tall buildings, wind and earthquake induced lateral forces are generally resisted by 
shear walls. A solid shear wall can easily be accounted for as a cantilever beam. 
Whereas, shear walls pierced by doors, windows and corridors are harder to analyze 
since they are highly indeterminate. Due to their high resistance to lateral forces, shear 
walls have become very popular in tall buildings. Thus, an increase in the number of 
bays in such structures for architectural needs has become inevitable. 
During design, it is important to know the free vibration properties of a structure, to 
carry out its computation for dynamic lateral loading. For this purpose, Li and Choo 
(1984) have studied the free vibration analysis of a single bay coupled shear wall and 
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determined the natural frequencies and the corresponding mode shapes. In the present 
study, a free vibration analysis has been carried out for a multi-bay coupled shear wall 
on elastic foundation. 

If the CCM is applied on multi-bay coupled shear walls directly, the free vibration 
analysis carried out ends up with a high order system of simultaneous differential 
equations, written for all sections of the shear wall. Hence, a suitable special application 
has been employed to render the problem manageable. 

The special method used in the present study comprises two steps. In the first step, the 
structure is modeled as a system of lumped masses. The number of lumped masses 
gives the degrees of freedom of the system and is selected freely by the analyst. Each 
lumped mass is determined by using the average mass per unit height of the 
corresponding section of the shear wall. 
To find the stiffness matrix, each lumped mass is loaded with a unit horizontal force at a 
time and the corresponding horizontal displacement vectors for the whole structure is 
found. For each loading, the compatibility equation is written for the vertical 
displacements at the midpoints of the connecting beams in each span using the CCM. 
To solve the system of second order, linear, coupled differential equations, thus 
obtained, first, a matrix orthogonalization is applied to uncouple it (Meirovitch, 1980). 
Then, this system of equations with diagonal coefficient matricies is solved numerically. 
During this analysis, the boundary conditions at the base of the shear wall are written, 
accounting for the vertical, horizontal and rotational stiffnesses of the foundation. 
During the determination of the horizontal displacements, the horizontal displacements 
and slopes of any two neighboring sections and the stiffener (if there is one) at that 
boundary are taken to be equal. 
After finding the displacements for all unit loading cases, the flexibility matrix for the 
multi-bay shear wall can be written in a straightforward manner. The inverse of this 
matrix is the stiffness matrix. Substituting this stiffness matrix and the previously 
obtained mass matrix in the free vibration equation, the natural frequencies and the 
corresponding mode vectors are obtained. 

A computer program has been prepared in the MATHEMATICA computer algebra 
system to implement the foregoing analysis. At first, the results of the present work for 
a single bay coupled shear wall has been compared with those given by Li and Choo 
(1984). Then, the free vibration analysis of a five bay coupled shear wall, has been 
carried out. Both examples were solved both by the present method and the structural 
analysis program SAP2000 (Wilson, 1997) and the results were observed to be in very 
good agreement. 
 
Analysis 
 
The multi-bay coupled shear wall is, first, modeled by discrete masses, and then, 
analyzed by the CCM. The mass matrix of the multi-bay coupled shear wall is found as 
a diagonal matrix employing a lumped mass approach. For this purpose, the top, the 
bottom and each height at which there is a stiffening beam and/or change of wall 
properties will be called “ends” and the region between any two consecutive ends will 
be called a “section”. A suitable number of equidistant masses will be placed in each 
section. The masses in a section will be found by dividing the total mass of the section 
by this number and half of that will be assigned to the ends of the section. Completing 
this procedure for each section and adding to each end the additional mass due to the 
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pertinent stiffening beam, the stiffness matrix is found as a diagonal matrix. The 
dimension of this matrix is NxN where N shows the number of masses (Figure 1). In 
figure 1, i shows the number of sections and borderlines between consecutive sections, j 
shows the number of bays and piers, m shows the total number of bays and n shows the 
total number of sections in vertical direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A multi-bay shear wall with stiffening beams 
 
Ignoring the vertical and rotational inertial effects, only the horizontal one is taken into 
consideration. Thus, each lumped mass contributes only one degree of freedom. 
Although this simplification causes some error in the higher modes, an increase in the 
number of lumped masses decreases this error. Despite the foregoing simplification, a 
more important factor, i.e. the flexibility of the foundation, is accounted for in the 
present study. Towards this end, the bottom end of each pier has been modeled by three 
constraining springs, one vertical, one horizontal and the third rotational. 

The primary assumption in the CCM is that the lengths of the connecting beams do not 
change, i.e. their axial stiffness is infinitely large. This assumption is equivalent to the 
widely used rigid diaphragm model for storey floors which is known to yield rather 
good results. This assumption renders the lateral displacements at the same floor level 
equal, for all piers. Consequently, the slopes and curvatures at the same level can be 
assumed to be equal, as well. Furthermore, in this method, it being assumed that every 
span between two neighboring piers is of constant value throughout the total height of 
the wall, the real connecting beams with bending stiffness i,cjIE  are replaced by a 
laminated medium with ii,cj h/IE  per unit length in the vertical direction. In the 
foregoing expression, E, i,cjI  and ih  are, respectively, the elasticity modulus, the 
moment of inertia of the connecting beams in bay j of section i and the storey height in 
section i. Likewise, the discrete shear forces in the connecting beams are replaced by a 
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continuous shear force function i,jq , per unit length of height, along the mid-points of 
the connecting laminae (i.e. the points of zero moment).  
The flexibility matrix is found by applying a unit force in the horizontal direction at the 
height of each lumped mass, one at a time. The horizontal displacements found from 
each unit loading case constitute a column of the flexibility matrix. Hence, an analysis 
carried out for one general unit loading will suffice to find the complete flexibility 
matrix, the inverse of which yields the stiffness matrix. 

Now that the discrete values are expressed as a continuous function of the longitudinal 
coordinate, to find the relations among the shear force functions, i,1jq −  and i,jq , and the 
corresponding contributions to the axial forces in the piers, 

i,1j
Q

−
 and i,jQ , the 

connecting laminae, on the two sides of a pier in section i, are cut at their midpoints, 
which are the points of zero moment (Figure 2). 
 
 
 
 
 
 
 
 
 
 

Figure 2. The vertical forces on an isolated region of the shear wall 
 
Applying the vertical force equilibrium equation to a dx length of pier j of section i, the 
following equations are found: 

i,1ji,j
i,ji,1j qq

dx
dQ

dx
dQ

−
− −=−    n,...,2,1i,1m,...,2,1j =+=  

in which 

0qqQQ i,1mi,0i,1mi,0 ==== ++    n,...,2,1i,m,...,2,1j ==  

It should be noted, here, that instead of the axial force in section i of pier j, the sum of 
the shear forces starting from the top in the two neighboring spans, namely i,jQ  and 

i,1jQ −  functions, are taken as the fundamental unknowns. The difference between the 
foregoing functions constitutes the axial force in section i of pier j. As a result of 
equations (1-2)  

i,j
i,j q

dx
dQ

−=    n,...,2,1i,1m,...,2,1j =+=  

When the unit force is in one of the sections, defined previously, that section is divided 
into two new sections. 
Defining the Macaulay’s brackets by 
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the moment-curvature relation, in a generalized sense, for a cross-section of the shear 
wall at height x, can be written as follows: 

∑
=

−>−=<
m

1j ji,j
1

p2
i

2

i
LQxH

dx

yd
EI    n,...,2,1i =  

Here, pH , 
j

L  and iI  are, respectively, the height at which the unit force is applied, the 

distance between the axes of the piers j and j+1 and the sum of the moments of inertia 
of the piers  in section i. 
It will be assumed that all rows of connecting laminae will be cut through the mid-
points, which are the points of zero moment, thus exposing the shear forces in them. 
The compatibility of the relative vertical displacements at the ends, on the two sides of 
the cut sections necessitates their sums to be equal to zero for each lamina, i.e. 
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This compatibility equation can be written for all spans of the shear wall, having in 
mind the previously given values (2). In (6), ja , cbiC , i,cjI , i,jA  and j0δ , are, 
respectively, the open length of span j, the beam-wall connection stiffness in section i, 
the moment of inertia of the connecting beams in span j of section i, the cross-sectional 
area of pier j in section i and the relative vertical displacement of the bottom of pier j 
with respect to that of pier j+1. The terms of the compatibility equation (6) are the 
relative vertical displacements of the two ends on the two sides of the cut due, 
respectively, to the bending of the piers, the relative rotation of the beams with respect 
to the piers, the bending of the connecting beams due to the shear forces, the axial 
deformations of the parts of the piers between section i and the foundation, the axial 
deformations of the piers in section i and the relative vertical displacements in the 
foundation. Differentiating each and every equation in (6) with respect to x, substituting 
expressions (3) and (5) and simplifying the resulting equations, the following non-
homogeneous second order linear differential equation with constant coefficients is 
obtained for each section i (i=1,2,…,n): 

[ ] [ ] [ ] 1
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where the following definitions apply: 
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The set of differential equations (7) is coupled and, moreover, as the number of bays 
increase, closed form solution is not feasible, if at all possible. In this work, matrix 
orthogonalization method will be used for solving the differential equation set (7). For 
this purpose, first, using the variable transformation 

i,jji,j
ZLQ =    n,...,2,1i,m,...,2,1j ==  

the equation set (7) can be written in the following form for the new variables i,jZ  
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where A and B  are mxm and Z  and eM  are mx1 dimensional matrices. The 
homogeneous part of this matrix equation, which is an eigenvalue problem in the 
following form 

0ZBZA =+′′  

is solved and the eigenvectors corresponding to the eigenvalues all together yield the 
transformation matrix T. Since the coefficient matrices A  and B  are constant, (10) can 
be diagonalized. For this purpose, the following transformation can be used: 

YTZ,YTZ ′′=′′=  
which, when substituted in (10), yield 

eMYTBYTA =+′′  

(8) 

(9) 

(10) 

(13) 

(11) 
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Here, T  and Y  are, respectively, the transformation matrix of dimension mxm and the 
vector of independent functions of variable x of dimension mx1. Multiplying both sides 
of (13) by the transpose of T , the two coefficient matrices A  and B  are diagonalized 
to yield 

eM~YB~YA~ =+′′  

which is an uncoupled system of differential equations. The set of expressions yielding 
the solution of (14) for all sections is of the following form: 
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There are 2xmxn integration constants i,jC  and i,jD  in (15). To determine these 
constants, the boundary conditions at the top, bottom and between each pair of 
consecutive sections are used. 
Before writing down the boundary conditions, the shear forces in the stiffening beams 
must be determined. For this purpose, compatibility equation (6) must be written both 
for section i at level ix  and the stiffening beam i and solved simultaneously. Thus, 
employing the definitions 
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the shear forces in the stiffening beams are found as follows: 
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Since there are as many unknown integration constant pairs, i,jC  and i,jD , as there are 
spans, the conditions of vertical force equilibrium at the ends including the cross-section 
where the unit force acts and excluding the bottom of the wall and the conditions of 
continuity of slope at the ends including the cross-section where the unit force acts and 
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Here, rjK  and vjK  are, respectively, the rotational and vertical stiffnesses of the 
foundation of the j’th pier. When there is a stiffening beam at the bottom of the wall, 

i,jQ  must be increased as much as the shear force in that stiffening beam.  

Substituting the integration constants, obtained from the foregoing boundary conditions, 
in expressions (15), then, the resulting i,jY  in the first of equations (12) and the latter 
expressions in the second of equations (9), the unknown functions i,jQ  are obtained, in 
a straightforward manner. 

Substituting i,jQ , thus obtained, in the moment-curvature relations (5) and integrating 
twice with respect to x, the following expressions are found for the horizontal 
displacements:  
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The number of integration constant pairs, iH  and iG , in the above equations is equal to 
the number of sections along the height of the wall. These constants are determined 
from the continuity of the displacements and slopes at the ends between all pairs of 
consecutive sections and the conditions, at the bottom of the wall, that the horizontal 
displacement and the rotation at the bottom of the wall should be given, respectively, as 
follows:  
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Here, hjK  is the horizontal stiffness of the foundation of the j’th pier. 

Having determined the lateral displacements for unit loadings at each and every one of 
the levels of lumped masses, the flexibility matrix and thereof the stiffness matrix can 
be obtained in a straightforward manner. Then, writing down the standard frequency 
equation for the discrete system in the following form: 

0XKXM =+&&  

solving it for the circular frequencies and substituting them back into the free vibration 
equation, one at a time, the corresponding mode shapes can be obtained. 
 
Numerical Results 
 
A computer program has been prepared using MATHEMATICA computer algebra 
system to implement the analysis carried out in the previous section. To verify the 
present method two examples have been solved. 
 

(20) 

(21) 

(22) 

(23) 



 

 

 

348 

Example 1 treats the natural vibration analysis of the single bay coupled shear wall in 
the literature (Li and Choo, 1984). This shear wall rests on rigid foundation and has no 
stiffeners, 0.3048 m thickness and the following properties: a1=2.438 m, b1=b2=6.096 
m, H=60.96 m, h=3.048 m, Ac=0.2127 m2, Ic=8.63×10-3 m4, ρ (density)=2405 kg/m3, 
E=2.876×1010 N/m2. The results found for the natural frequencies are compared with 
those found in the literature (Li and Choo, 1984) in Table 1. The problem is solved by 
SAP2000 package employing the equivalent frame method. 
 

Table 1. Comparison of the natural frequencies in example 1 
 

Method Li and Choo Galerkin Matrix 
progression SAP2000 Present 

work 
Mode 1 2.08 2.08 2.05 2.08 2.08 Frequencies 

(Hz) Mode 2 9.34 9.37 8.78 9.34 9.34 
 
Example 2 treats a coupled shear wall with five bays, for which the geometric properties 
are seen in Figure 3. The physical properties of the wall are as follows: E= 2x107 
kN/m2, ρ = 24 kN/m3, vK = 1.3x107 kN/m, rK = 4x108 kN-m/rad, ∞=hK . The 
properties pertaining to all bays are same and the thickness of the wall is 0.3 m 
everywhere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Five bay coupled shear wall 

 
The five bay coupled shear wall was solved, first, without stiffeners, and then, with two 
stiffeners, one at ¼ and the other at ¾ of the total height. Free vibration analyses of both 
cases were carried out both by the present method and by SAP2000 structural analysis 
program and the first ten natural frequencies (NF) were presented in Table 2, together 
with their percentage differences. The elastic foundation is modeled by three equivalent 
springs, one horizontal, one vertical and one rotational, at the bottom of each and every 
pier. 
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Table 2. Comparison of the natural frequencies of the two methods for the five bay 
coupled shear wall 

Without stiffeners With stiffeners 
Mode SAP2000 

(Hz) 
Present work 

(Hz) 
Difference 

(%) 
SAP2000 

(Hz) 
Present work 

(Hz) 
Difference 

(%) 
1 3.7748 3.7292 1.20 4.0962 4.0930 0.07 
2 13.2705 13.0638 1.55 15.2508 15.1348 0.76 
3 26.7154 26.3619 1.32 27.7071 27.7726 0.23 
4 41.7248 41.3214 0.96 43.3061 43.5509 0.56 
5 59.8751 59.5064 0.61 70.5726 70.2616 0.44 
6 81.1809 80.8492 0.40 92.5581 92.3744 0.19 
7 106.1309 105.8253 0.28 108.4562 111.1260 2.46 
8 134.7022 134.3263 0.27 138.5687 139.6644 0.79 
9 167.0208 166.4775 0.32 185.1551 183.6118 0.83 

10 202.9698 202.0851 0.43 219.0900 218.3422 0.34 

Conclusions 
In the first example, the problem of the free vibration analysis of a single bay coupled 
shear wall (Li and Choo, 1984) has been solved both by the present method and 
SAP2000 package (Wilson, 1997), so as to check the validity of the present method. 
The results of the two methods and those previously found in the literature (Li and 
Choo, 1984) are in good agreement. The dynamic analysis of multi-bay coupled shear 
walls has not been studied previously, at least, to the knowledge of the authors. Hence, 
as example 2, the free vibration analysis of a five bay coupled shear wall is carried out 
and the results have been compared with those of SAP2000 package. 
In the first example, the results of the present method have matched fairly well with 
those of previous studies mentioned in the literature (Li and Choo, 1984). In the second 
example, the five bay coupled shear wall has been solved with and without stiffeners 
and the first ten natural frequencies have been compared with those found by SAP2000 
package. As seen in Table 2, the results are in fair agreement. 
The method proposed in the present study, is two fold advantageous. Firstly, the data 
preparation is much easier than that of the equivalent frame method. Besides, for quick 
trials of many different cases of a structure for optimization purposes, new versions of 
data can be obtained with much less changes compared to other methods. Secondly, the 
computation time of the present method is much less than those of other methods. The 
computation time needed to solve a certain problem is about five times less for the 
present method than that for the finite difference method (Li and Choo, 1984). 
Considering the foregoing two advantages, the present method can be used effectively 
for predesign or dimensioning purposes. Once the dimensioning is complete, the final 
design can be carried out employing a suitable method consistent with the importance of 
the project in hand and the accuracy desired. 
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