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ABSTRACT: An optimum structural design problem is posed as a typical nonlinear 
programming problem with complex objective function(s) and  a vast number of problem 
constraints. Recently, considerable progress has taken place in the development of a 
number of evolutionary computation methods for the solution of such problems; namely, 
evolutionary algorithms (genetic algorithms (GAs), evolution strategies (ESs), 
evolutionary programming (EP)), simulated annealing (SA), scatter search (SS), classifier 
systems (CSs) and genetic programming (GP). In this paper optimal (minimum weight) 
structural design problems, with respect to size, shape and topology variables, are 
explained and some optimum design applications using GA, ES and SA are presented and 
discussed for structural systems which make use of trusses. 
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ÖZET: Bir yapı optimizasyonu problemi, kompleks amaç fonksiyonları ve çok sayıda 
kısıtlayıcıları ile, lineer olmayan tipik bir programlama problemi olarak ortaya 
çıkmaktadır.  Son yıllarda, lineer olmayan programlama problemlerinin çözümü için çeşitli 
evrimsel hesap yöntemlerinin geliştirilmesinde önemli mesafeler alınmıştır.  Bunlara örnek 
olarak; evrimsel algoritmalar (genetik algoritmalar (GAs), evrimsel stratejiler (ESs), 
evrimsel programlama (EP)), tavlama simülasyonu (SA), dağınık arama (SS), sınıflamalı 
sistemler (CSs) ve genetik programlama (GP), gösterilebilir.   Bu makalede optimum 
ağırlık için, kesit, şekil ve topoloji optimizasyonu ele alınmakta, ve çeşitli kafes kirişler 
için GA, ES ve SA’ın kullanıldığı yapı tasarımı örnekleri verilmektedir. 
 
 

Introduction 
 
Engineering design is a complex and usually an iterative process.  The main complexity 
arises from the diverse nature of constraints which need to be satisfied by the final design.  
A systematic treatment of the analysis phase of such an iterative process using computers 
and finite element analysis has contributed to handle the problem in a very efficient 
manner complementing the experience, intuition and creativity of the designer.  The 
conventional approach of the design process starts from a preliminary design with fixed 
parameters which is then analyzed and the result obtained is studied as to the satisfaction 
of constraints. This process is repeated until all constraints are satisfied.  In this procedure 
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obtaining the best possible design is primarily dependent on the experience of the designer.  
On the other hand, optimum design seeks the best solution in a different manner.  Here, at 
the problem formulation phase certain design parameters are defined as design variables 
and the optimal values of these variables are sought as to satisfy the problem constraints 
and also optimizing the objective(s) of the design.   Depending on the chosen design 
variables and the objective function an optimum solution is obtained which does not 
require the interference of the designer.  A question which is left here is whether the 
solution is a global or a local solution.  A global solution is obtained under certain 
conditions only and thus good near optimum solutions are acceptable.  An optimum design 
problem is thus posed as a nonlinear programming problem in n-design variables as: 
 
optimize (minimize/maximize)  f(x)          (x)T=(x1,x2,...,xn) 
 
subject to                                    hj(x)=0      j=1,...,m                                                      (1) 
 
                                                   gk(x)≤0      k=1,...,p 

 
                                                   xi

l≤xi≤xi
u   i=1,...,n 

 
where (x) is the vector of design variables, f(x) the objective function, hj and gk are 
equality and inequality constraints, respectively and xi

l and xi
u show the lower and upper 

bounds on design variable xi. 
 
This paper is concerned with the solution of such a formulation in relation to optimum 
structural design.  Specifically, the use of some emerging evolutionary computational 
methods, namely, GAs, ESs and SA are discussed.  Illustrative examples are given for 
some typical truss structures. 
 

Optimum Structural Design 
 
The objectives of a structural design problem may be manyfold.  The following discussion 
considers minimum weight design of discrete systems composed of one-dimensional 
elements connected at certain nodes, i.e., trusses, beams, frames and grids.  For such 
systems, three main type of problems can be identified; size, shape and topology 
optimization.  In size optimization, the geometry of the structure is totally fixed and the 
design variables are related to cross-sectional parameters,e.g., the cross-sectional areas of 
truss members, or cross-sectional dimensions of beams or frames.  In shape (or 
configuration) optimization the positioning of certain nodes are considered as design 
variables.  Finally, in topology optimization member connectivity, i.e., existence or non-
existence of structural members are involved.  The optimum design problem can be 
formulated to deal with these cases seperately or consider any two of them together, or all 
three together (a simultaneous optimization problem).  For practical purposes size 
optimization is usually a discrete optimization problem.  In most cases designers choose 
member cross sections from available section profiles.  Shape optimization is necessarily 
continuous.  The position of the nodes are allowed to vary between certain limits.  Member 
connectivity is also handled as a discrete problem. Thus a simultaneous optimization 
problem is a challenging one, since both discrete and continuous design variables are 
involved.  Morover, especially in large scale structures the number of design variables are 
increased creating a very large design space of a multimodal nature. 
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Another important issue in structural optimization is the handling of constraints.  The usual 
constraints for framed structures are those defined on element stresses, nodal 
displacements and stability.  Large number of constraints of different characteristics 
increases the complexity of the computational procedure. Thus an optimum structural 
design problem with different objectives, large number of design design variables and 
constraints (especially for large scale structural systems) requires efficient optimization 
algorithms. 
 

Evolutionary Computation Methods 
 
In this section as representative of emerging evolutionary computation techniques genetic 
algorithms, simulated annealing and evolution strategies are briefly discussed as solution 
procedures for the nonlinear programming problem. 
 
Genetic Algorithms 
 
Genetic Algorithms (Holland, 1975) are stochastic search methods which are based on 
Darwin’s theory of ‘survival of the fittest’ and adaptation, i.e., natural evolution.  Thus, a 
genetic algorithm starts with a randomly chosen population which is evolved using genetic 
operators of selection, recombination, and mutation which mimic the natural process of 
evolution. During a typical generation relatively good individuals replace relatively  bad 
individuals. Whether an individual is good or bad is determined by defining a fitness 
function ( a function representing the aim of the search) and as generations proceed the 
general fitness of the population is expected to increase. Selection between individuals is 
performed according to its fitness and fitter individuals are favoured to reproduce more as 
compared to to less fit individuals. Recombination aims to mix the good characteristics of 
the selected individuals and carry them into the individuals of the next generation.  
Mutation operator is applied to  individuals to change their structures in an arbitrary 
manner which in turn alters the genetic similarity of a population as generations progress.  
This iterative process continues until a preassigned number of generations are completed or 
a convergence criterion is satisfied.  Genetic algorithms are unconstrained search 
techniques.  In the existince of constraints which is the case for structural optimization the 
handling of constraints becomes an issue to be taken care of (Michaelewicz, 1995), 
(Hasançebi and Erbatur, 2000a). 
 
Simulated Annealing 
 
Simulated annealing (Kirkpatrick et al., 1983)  is an optimization technique which stems 
from the annealing process of physical systems using principles of thermodynamics and 
statistical mechanics.  The method shows a basic similarity to local search methods 
(hillclimbing methods) in the sense that it employs only a single design in the search for 
the optimum solution.  The important distinction between the two approaches shows itself 
when the current design is perturbed to get  the next design.  In local search methods if the 
new design yields a higher value of the objective function it is automatically rejected, thus 
the search is necessarily only allowed in the neigbourhood of the starting design, i.e., it is 
dependent on the starting design.  However, in simulated annealing a probability of 
acceptance is introduced; if the new design provides a lower value of the objective function 
its probability of acceptance will be ‘1’ and it will replace the old design, and if the new 
design results in a higher value of the objective function it is not automatically rejected but 
will be accepted with a certain probability of acceptance.  This mechanism eliminates 



 353

being stuck to a local optimum and in this sense simulated annealing is a global 
optimization technique.  The acceptance probability is a function of the objective function 
of the existing and new designs and a temperature parameter.  The optimization process is 
executed starting from an initial value of the temperature and is repeated by lowering its 
value up to a small final value controlled by an assumed acceptance probability. 
 
Evolution Strategies 
 
Evolution strategies (Schwefel, 1981), (Back, et al, 1991)  are very similar to genetic 
algorithms in the sense that they also use a population of individuals in the evolution 
process.  The main differences lie in the fact that in evolution strategies recombination 
operator and mutation preceed the selection operator, and that these are not only applied to 
design variables but also for certain strategy parameters (standard deviations and rotation 
angles).  Another important characteristics of evolution strategies is that these control 
parameters do not vary by a deterministic fashion but are self-adaptive.  The two mostly 
used evolution strategies are multimembered and expressed as (µ + λ) – ESs and (µ,λ)-
ESs.  In the former, the generations start from µ individuals from which λ individuals are 
reproduced.  The selection for µ relatively better individuals for the next generation is 
performed using this enlarged population consisting of µ + λ individuals.  In the latter, 
from µ individuals λ individuals ( λ>µ) are reproduced and from these individuals the 
relatively better µ individuals are selected for the next generation. Thus in (µ,λ)-ESs the 
life of an individual is restricted with one generation only. 
 

Optimum Design of Truss Structures For Minimum Weight 
 
Consider a planar or a space truss structure composed of e-elements and n-nodes. Let Ai , 
Li and ρi, ( i=1...,e ) represent the cross sectional areas, lengths and unit weights of  the 
elements.  The nonlinear programming problem for the general case of simultaneous 
optimization considering size, shape and topology variables is defined as follows: 
 
minimize          W(Ai , Cj , Ti ) = Σ ρi  Li Ai ,  i  = 1,…,e,   j = 1,…,n                           
                         
to determine 

Aex1, vector for size variables 
Cnx1, vector for shape variables                                    
Tex1, vector for topology variables                                                     (2) 

 
subject to constraints 

                         σ<σall     element stresses                                                    
                         λ<λall     element slenderness ratios                                           
                         u<uall      nodal displacements                                                     
 
where the subscript ‘all’ indicates allowable values. 
 
The above discussed evolutionary computational methods are all designed for 
unconstrained optimization.  On the other hand the minimum weight design of trusses (in 
general problems in structural optimization) includes a large number of constraints related 
to structural behaviour and other side constraints, e.g., imposed by architectural  
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Table 1: Some Optimum Design Applications 
METHOD OPT. TYPE Structure 

 
No. of 

Members 
No. of 
Nodes GA SA ES S1 S+C2 S+C+T3 

 

47 22 a a a - a a 

 

72 20 a a a a - - 

 

942 244 - a - a - - 

 

25 10 a a a a - - 

 

224 65 a a - - - a 

S1: Size; C2: Configuration (shape); T3: Topology  
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considerations.  There are several methods proposed for handling the  constraints 
(Hasançebi and Erbatur, 2000a), (Michaelewicz, 1995).  A popular one is based on the use 
of penalty functions where individuals (designs) which violate constraints are penalized.  
The penalty function is integrated to the objective function (W) and a new modified 
objective function (Wm) is defined, i.e., the constrained problem is transformed into an 
unconstrained problem: 
 

                                                      Wm = W + Penalty                                                     (3) 
 
For minimization problems, there is no penalty if  constraints  are not violated, otherwise 
the penalty is a positive value the magnitude of which depends on the severity of the 
violation; higher the violation higher is the penalty. 
 
Size optimization (Erbatur et al, 2000) ( Rajeev and Krishnamoorty, 1992) is carried out 
for fixed shape and topology.  For practical purposes it is a discrete optimization problem.  
The designer has to select a section from an available profile list. In the lack of efficient 
discrete optimization techniques, the usual conventional approach was to obtain a 
continuous solution, then to round it up to the highest existing value.  This of course spoils 
the main idea of optimization. An important contribution of evalutionary computation 
techniques lie here, since they can deal with discrete , continuous and mixed problems very 
efficiently.  In dealing with size and/or shape and/or topology variables usually a 
multilevel optimization procedure is followed (Dobbs and Felton, 1969) (Hajela, et al, 
1993).  Here, firstly a topology optimization is carried out to find the optimum topology or 
topologies.  Then, the size and/or shape design variables are introduced as a second level 
of optimization.  Complete simultaneous optimization problem solutions are given in 
(Rajan, 1995), (Hasançebi and Erbatur, 2001) and (Hasançebi and Erbatur, 2002). 
 

Some Applications and Discussion 
 
Trusses find applications in a variety of structural systems including but not limited to 
buildings, bridges, roofs, towers, cranes, antennas, and transmission towers.  Existing 
literature covers many examples including some benchmark truss structures which are used 
to test the success or efficiency of newly proposed techniques and also, optimum design of 
large-scale structures composed of complex geometries and a very large number of 
elements.  Some examples of truss design problems which are optimized using GA, SA 
and ES are given in Table 1.  It has been shown that with the use of evolutionary 
computation techniques, a) better optimum designs are obtained, b) many optimum design 
problems which were difficult or impossible to be handled by traditional optimization 
techniques can now be treated efficiently and with confidence.  Ongoing research studies 
in the Department of Civil Engineering at METU recently resulted in computer programs 
SSTOGA (Size-Shape-Topology Optimization Using GAs), (Hasançebi and Erbatur, 2001) 
and SSTOSA (Size-Shape-Topology Optimization Using Simulated Annealing), 
(Hasançebi and Erbatur, 2000b) which are capable to treat size and/or shape and/or 
topology  optimization of 2-D and 3-D trusses considering also important practical 
situations.  Endavours to increase the computational efficiency and wider recognition of 
evolutionary computation techniques in structural design applications is continuing and it 
is believed that the outcome will be of significant use to structural designers seeking better 
designs. 
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Conclusion 
 
In truss optimization three categories of problems can be identified; (i) sizing, (ii) shape or 
configuration and (iii) topology optimization.  These problems can be handled separately, 
however the most efficient optimization problem considers these simultaneously.  
Furthermore, for practical purposes important issues are (a) for size optimization discrete 
solutions should be favoured, (b) certain important nodes and elements should exist in the 
final optimized structure, (c) stress, deflection and stability considerations should be 
included as constraints.  Recent studies have revealed that the relatively new evolutionary 
computation techniques can handle these problems in a much more systematic manner as 
compared to conventional approaches and thus are proved to be indispensible modern 
techniques to serve the structural optimization community. 
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