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ABSTRACT:  Five models for estimating deformation capacity of RC columns are 
reviewed in an attempt to establish reliable inelastic displacement capacities. 
Displacement ductility, peak drift, and plastic hinge rotation parameters are used as 
measures of inelastic deformation. In many cases the analytical models are observed to 
overestimate deformation capacity and exaggerate the effect of transverse steel on 
deformation capacities. A simple, classical model is shown to produce similar or better 
estimates of the column deformation capacities than more complex models. 
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ÖZET: Betonarme kolonların deformasyon kapasitelerini elde etmek amacıyla mevcut 
beş ayrı model incelenmiştir. Elastic ötesi deformasyon ölçütü olarak yer değiştirme 
sünekliliği, maksimum öteleme ve plastic mafsal dönme parametreleri kullanılmıştır. 
Birçok durumda analitik modellerin yüksek yer değiştirme kapasiteleri verdiği ve enine 
donatının deformasyon kapasiteleri üzerindeki etkiyi oluğundan fazla gösterdiği 
gözlenmiştir. Daha karmaşık modellere oranla, basit ve klasik bir modelle benzer veya 
daha iyi kolon deformasyon kapasitelerinin hesaplanabileceği gösteriliştir. 
 
 

Introduction 
 
Inelastic behavior is intended in most structures subjected to infrequent earthquake 
loading. Reinforced concrete columns are the preferred locations of inelastic behavior in 
many bridges because of their accessibility for inspection and repair. Thus, the 
development of displacement-based design procedures for bridges requires knowledge 
of the deformation capacity of the bridge columns.  
 
Methods for estimating the deformation capacity of reinforced concrete columns have 
been the focus of many research studies. Several available models for estimating 
column deformation capacity include those by Park and Paulay (1975), Lehman and 
Moehle (1998), Panagiotakos and Fardis (2001), and Priestley et al. (1996). Except for 
the empirical model of Panagiotakos and Fardis (2001)), these models estimate the 



 

 

deformation capacity at yielding and ultimate based on lumped inelasticity idealization 
for a cantilever, as shown in Figure 1. The simplest form of such model is to compute 
deformation capacities based on flexural contributions, assuming the curvature 
distributions of Figure 1, as described by Park and Paulay in 1975. This approach is 
termed the “simple” model in this paper.  
 
This paper reviews five analytical models in an attempt to establish reliable deformation 
capacities. Displacement ductility, drift, and plastic hinge rotation parameters are used 
as measure of inelastic deformation. A limited set of experimental data from large-scale 
tests of reinforced concrete columns having a rectangular cross section are also 
considered. Estimates of the deformation capacities of the columns are compared to the 
observed deformation capacities. Nominal deformation capacities for columns with 
reinforcement as recommended by ATC-32 (Improved Seismic Design Criteria for 
California Bridges) are suggested based on the experimental data. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Lumped inelasticity model for a cantilever column 
 
 

Evaluation of Inelastic Deformation Capacities 
 
The load-deformation behavior of a column is commonly idealized by a bilinear curve 
that is fit to the response computed analytically, or may be fitted approximately to the 
envelope of experimental test results. Although a bilinear curve may be defined by two 
points, the yield and ultimate displacements (∆y and ∆u) and the corresponding loads, 
various definitions of these points have been used by different researchers. Once the 
yield and ultimate points are established, the displacement ductility, δµ , plastic 
displacement, p∆ , plastic hinge rotation, pθ , and peak drift, dδ  capacities may be 
derived for the cantilever column of Figure 1. 
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While experimental data is invaluable without doubt, the design of columns normally 
relies on calculated estimates of the load-deformation behavior, as illustrated in Figure 
2. The yield and ultimate displacements may be estimated by including the 
contributions of flexure, shear, and anchorage slip, as proposed by various researchers. 

 shearyslipyflexureyy ,,, ∆+∆+∆=∆  (5) 

 shearuslipuflexureuu ,,, ∆+∆+∆=∆  (6) 
The five models considered in this paper are: (1) “simple” model, (2) Lehman model 
(Lehman and Moehle, 1998), (3) Panagiotakos analytical model (Panagiotakos and 
Fardis, 2001), (4) Panagiotakos empirical model (Panagiotakos and Fardis, 2001), and 
(5) Priestley model (Priestley et al., 1996). The calculation of yield and ultimate 
displacements according to the five models is summarized in Table 1.  
 

Table 1. Definition of deformation indices using available models 
Deformation 

Index 
“Simple” 

Model 
Lehman 
Model 

Panagiotakos 
Analytical 

Model 

Panagiotakos 
Empirical Model Priestley Model 

∆y,flexure φyL2/3 φyL2/3 φyL2/3 φyL2/3 φy(L+0.15fydb)2/3 
∆y,shear NA VyL/(0.4Ec,sec0.8Ag) NA 0.0025L ∆conc, shear+∆truss, shear

(1)

∆y,slip NA φyLfydb/8√fc’ NA εyfydbL/4√fc’(d-d’) incl w/∆y,flexure 
θp (φu-φy)Lp (φu-φy)Lp (φu-φy)Lp (2) θu-∆y/L (φu-φy)Lp 
θu ∆u/L ∆u/L ∆u/L (2) ∆u/L 
∆p θp(L-0.5 Lp) θp(L-0.5 Lp) θp(L-0.5 Lp) ∆u-∆y θp(L-0.5 Lp) 
∆u ∆y+∆p ∆y+∆p ∆y+∆p θuL ∆y+∆p 

Lp 0.5H 0.5L(Mu-Mn)/Mn 

+1.2(fu-fy) db/4√fc’ 
0.12L+0.014fydb NA 0.08L+0.022fydb 

NA: Not Applicable 
(1) Details for shear contribution to yield displacement can be found in Priestley et al. (1996). 
(2) Details for Panagiotakos analytical and empirical models can be found in Panagiotakos and Fardis (2001). 
 
The application of the models (except the Panagiotakos empirical model) requires 
calculation of yield and ultimate curvatures. At the ultimate point, the contributions to 
displacements due to shear and anchorage slip, if considered in the model, are lumped in 
the plastic hinge length. Since in most cases, the proposed plastic hinge lengths are 
based on reproducing the experimental response, the definitions of yield and ultimate 
curvatures used by the investigators become important. The Panagiotakos analytical 
model provides equations for the calculation of yield and ultimate curvatures. We 
implemented the Mander model (Mander et al., 1988) in the moment-curvature analyses 
required for the “simple”, Lehman, and Priestley models. Figure 2 shows the moment-
curvature response computed for a typical well-confined column. The dashed curve is a 
bilinear curve fitted to the computed curve, defined by an effective yield point (Mn, φy) 
and failure of the cross-section (Mu, φu). The “yield” point (My, φy’) is defined as the 
point when the extreme tension steel yields or the strain in the concrete at the extreme 
compression fiber reaches 0.002, whichever comes first. For any axial load level, the 
nominal flexural strength, Mn, is calculated using a rectangular stress block but with the 
specified (for analytical study) or reported (for experimental data) yield and 
compressive strengths used without reduction factors. The ultimate curvature is defined 
as the smallest of the curvatures corresponding to (1) a reduced moment equal to 20% 
of maximum moment, determined from the moment-curvature analysis, (2) the extreme 
compression fiber reaching the ultimate concrete compressive strain as determined 
using the Mander model, and (3) the longitudinal steel reaching a tensile strain of 50% 
of ultimate strain capacity.  
 



 

 

 
 
 
 
 
 
 
 
 

Figure 2. Typical moment-curvature response of a well-confined column 
 
Inelastic Deformation Capacities from Analytical Models  
 
Using the five models, the sensitivity of the inelastic deformation capacities was studied 
for cantilevered columns by varying cross section size, aspect ratio, transverse 
reinforcement amount, and axial load ratio. In one set of analyses, three cross section 
sizes (305 mm x 305mm, 610 mm x 610 mm, 1220 mm x 1220 mm) were used, with 
the aspect ratio (cantilever length divided by section depth) held constant at 4. In 
another set of analyses, aspect ratios were changed from 2 to 10 by varying the column 
length while the cross section was kept constant. Two levels of transverse reinforcement 
were considered: the amount required per ATC-32 recommendations and one tenth of 
the ATC-32 requirement, termed well-confined and poorly-confined, respectively. Two 
levels of axial load were considered, equal to 0.1 and 0.5 times Agfc’. Material properties 
were constant for the cases considered; 420 MPa yield strength for both longitudinal 
and transverse steel and 27.5 MPa for concrete. The longitudinal reinforcement ratio 
was 1.5% for all cases.  
 
Neglecting minor differences due to cover requirements, the displacement ductility, 
plastic hinge rotation, and ultimate drift capacities were independent of the cross section 
size under the constraint of constant aspect ratio of 4. Figure 3 shows how the 
calculated plastic hinge rotations change with aspect ratio for an invariant cross section. 
The figure also illustrates the effect of the transverse steel amount, axial load ratio, and 
the influence of the model used to estimate deformation capacity. Similar plots for 
displacement ductility and peak drift are available in Inel (2002). The overall trends 
exhibited by the collection of models lead to the following observations: (a) except for 
the plastic hinge rotation capacity estimated by the “simple” model, no parameter is 
invariant with changes in aspect ratio, (b) the sensitivity of the inelastic deformation 
quantities to the models is obvious; different models can result in substantially different 
estimates of deformation capacity, (c) the effect of axial load ratio on deformation 
capacity is clear for the poorly-confined case; deformation capacities are smaller for the 
high axial load case, even though the ATC-32 compliant transverse steel is greater than 
for the case of low axial load ratio, and (d) well-confined columns can exhibit 
substantial calculated deformation capacities, for the cases investigated (axial loads 
equal to 0.1 and 0.5 times Agfc’). 
 
Differences in deformation capacities estimated with the models are greater for the high 
axial load ratio case. The largest differences are observed in the plastic hinge rotation 
and drift capacities for high aspect ratios, while the largest differences in the 
displacement ductility capacity are observed for low aspect ratios (Inel, 2002). Key 
observations related to the individual models are: (a) the “simple” model tends to 
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provide a lower bound estimate of plastic hinge rotation and peak drift for the well-
confined case, (b) the Lehman model is sensitive to the level of confinement. For the 
poorly-confined case, the deformation capacities estimated by the Lehman model are 
considerably smaller than those estimated by the Panagiotakos analytical and Priestley 
models, especially for the low axial load ratio case, (c) the Lehman model is sensitive to 
the level of axial load. For the well-confined columns with high axial load ratio, plastic 
hinge rotation and drift capacities estimated by the Lehman model are considerably 
higher than those estimated by the other models. The reason for this seems to be that the 
plastic hinge length suggested by Lehman and Moehle (1998) depends explicitly on the 
axial load ratio while the other models have plastic hinge lengths that are independent of 
the axial load ratio. For example, for the well-confined case with aspect ratio of 4, when 
the axial load ratio increases from 0.1 to 0.5, the plastic hinge length estimated by the 
Lehman model doubles. It should also be noted that although no limitations are 
identified in the use of the model, Lehman proposed the plastic hinge length equation 
based on test data for the axial load ratio of 0.1, (d) for the Panagiotakos analytical 
model, the displacement ductility capacities are nearly independent of the aspect ratio. 
This contradicts the generally accepted (and experimentally verified by Lehman and 
Moehle (1998)) trend that displacement ductility capacity decreases as aspect ratio 
increases. One reason this occurs is that the plastic hinge lengths, estimated by the 
Panagiotakos analytical model, are considerably smaller for small aspect ratios than 
those determined by other models such as the Priestley model. Another reason is that 
the shear displacement contribution to the yield displacement for the Panagiotakos 
analytical model can be substantial (e.g., the shear contribution may exceed the flexural 
contribution for an aspect ratio of 2, depending on the axial load ratio), resulting in 
larger yield displacements. The combination of smaller ultimate displacement capacity 
and larger yield displacements for small aspect ratios results in smaller ductility 
capacities; this leads to results counter to the expected trend in displacement ductility 
capacity as a function of aspect ratio, and (e) the Panagiotakos empirical model tends to 
estimate higher displacement ductility and drift capacities than the other models for the 
poorly-confined case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The effect of change in aspect ratio on the inelastic measurement quantities 

computed using the different models. 
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In summary, the sensitivity study indicates that none of the inelastic deformation 
capacity parameters (the plastic hinge rotation, displacement ductility, and peak drift 
capacities) are a robust, invariant measure of inelastic deformation capacity, for the 
cases of varying aspect ratio considered. Because the analytical study could not identify 
a single robust measure of inelastic deformation capacity, the following sections 
investigate results from experimental tests. 
 
Inelastic Deformation Capacities from Experimental Data Set 
 
The experimental data considered here was obtained from large-scale tests of 
rectangular reinforced concrete columns subjected to quasi-static reversed cyclic lateral 
loading, with axial load ratios of varied intensities held constant throughout the tests. 
Criteria used to establish database were: (1) a rectangular cross section with minimum 
dimension of 300 mm, (2) at least 8 longitudinal bars, each laterally supported by 
transverse reinforcement, and (3) minimum aspect ratio (M/VD) of 2.5. A total of 23 
tests with information required were retained among 29 specimens conforming to these 
criteria. The retained specimens had aspect ratios ranging from 2.86 to 4.83, axial load 
ratios, P/fc’Ag, ranging between 0.10 and 0.77, fc’ between 22 and 47 MPa, longitudinal 
reinforcement ratios ranged between 1.5 and 3.3% of the gross area with yield strength 
of 430 to 510 MPa.  
 
Experimental data was evaluated by identifying an envelope of the moment at the base 
of column that includes the applied (actuator) force-deformation plot and the P-∆ 
contribution arising from the applied axial load. That is, M= HappL + P∆, where Happ= 
applied horizontal force, P= applied axial load, and L is column height. It should be 
noted that secondary moment caused by P-δ along the length of member is neglected. 
The retained specimens had sufficient transverse reinforcement both within and outside 
potential plastic hinge regions to carry the maximum experimental shear developed 
during testing based on calculation, with the strengths established using the ATC-32 
equations for shear strength. Thus, the inelastic deformation capacity of the specimens 
was expected to be limited by mechanisms associated with flexural deformation rather 
than shear strength decay.  
 
The retained data is used to observe effects of axial load ratio on experimentally-
determined deformation capacities and as a basis for examining several proposed 
relations for estimating deformation capacity. The apparent displacement ductility, peak 
drift, and plastic rotation capacities of the specimens were examined using the identified 
ultimate displacements in conjunction with the estimated yield displacements and 
recommended values of plastic hinge length. The word “apparent” signifies data that 
was obtained or derived directly from the experiments. The ultimate displacements of 
the columns were determined by review of the measured response data. The ultimate 
displacement was defined as the maximum displacement corresponding to a 20% 
reduction of the maximum moment (including P-∆ contributions) developed during the 
experiment. This definition was used by Priestley and Park (1984) among others. Since 
this definition corresponds to a reduction in lateral strength, it may be assumed that 
vertical load carrying capacity was maintained throughout and beyond the ultimate 
displacement capacity as defined here. The use of a 20% drop is arbitrary and is 
intended to represent a substantial remaining flexural capacity for the confined concrete 
section. From the data set, it is observed that specimens with ATC-32 compliant 
transverse reinforcement can achieve a displacement ductility capacity of 6 or more, a 



 

 

plastic rotation capacity of 0.04 or more, and a drift capacity of 4.5% or more (Inel, 
2002).  
 
Comparison of Apparent and Estimated Deformation Capacities  
 
The apparent inelastic deformation capacities relied upon ∆y and Lp estimated using 
available models such as the “simple”, Lehman, Panagiotakos analytical, and Priestley 
models. These models would have to estimate values of apparent θp in order to 
accurately estimate the experimentally determined values of ∆u. This section compares 
the apparent plastic hinge rotation capacity values with the estimates of θp according to 
the four models that use the lumped inelasticity model. The Panagiotakos empirical 
model is also considered for comparison purposes. For this model, the apparent plastic 
displacement ∆p,apparent= ∆u,apparent-θyL was compared to the estimated plastic 
displacement ∆p,estimated= (θu,-θy)L, where θy and θu were computed using the proposed 
equations. The purpose of the comparisons of this section is to illustrate the reliability of 
the apparent inelastic deformation capacities determined from the experimental data set, 
rather than showing the accuracy or inaccuracy of the models. The estimated plastic 
hinge rotation capacities of the models that use the lumped inelasticity model were 
calculated as θp= (φu- φy)Lp.  
 
Comparison between the apparent and estimated deformation capacities shows that 
differences among the five models are obvious. The ratio of the estimated and the 
apparent deformation capacities is plotted in Figure 4 against axial load ratio and 
transverse reinforcement content to identify possible trends. The figure shows that as 
axial load ratio increases the differences between models become more noticeable. One 
obvious reason is the differences in the equations for plastic hinge length calculation. 
The “simple”, Panagiotakos analytical, and Priestley models do not consider the axial 
load ratio in calculating the plastic hinge length while the Lehman model depends 
explicitly on the axial load ratio. The effect of transverse reinforcement on the plastic 
rotation capacity is considered further. As the percentage of ATC-32 transverse 
reinforcement increases, all models except the Panagiotakos empirical model tend to 
estimate higher capacities, indicating that the models exaggerate the effect of transverse 
steel on deformation capacity. The “simple” model tends to underestimate the plastic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Ratio of the estimated to the apparent plastic deformation capacities of 

experimental data set vs. axial load ratio and transverse steel content. 
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deformation capacity while the other models, especially the Lehman and Priestley 
models, can overestimate the plastic deformation capacity.  
 
 

Conclusions 
 
Based on the parametric study of inelastic deformation parameters and the study of the 
experimental data, the followings were observed: (a) overall, the “simple” model tends 
to give lower bound estimates of deformation capacity, especially for plastic hinge 
rotation and drift capacities for columns with aspect ratios of 3 or greater, (b) the 
parametric study on varying cross section size under constant aspect ratio showed that 
the displacement ductility, plastic hinge rotation, and drift capacities (as percentage of 
specimen length) are independent of the cross section scaling when aspect ratio is kept 
constant. In the parametric study, minor differences relating to cover requirements and 
nominal bar diameters were neglected, (c) the scatter in the apparent deformation 
capacities is similar at low and high axial load ratios, (d) plastic rotation capacity was 
not clearly dependent on axial load ratio when confinement was provided satisfying 
ATC-32 requirements, (e) analytical models to estimate deformation capacity show 
large variations, (f) comparison of the apparent and estimated deformation capacities 
suggests that the analytical models can overestimate deformation capacity, and (g) the 
analytical models may exaggerate the effect of transverse steel on deformation 
capacities. 
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